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Creativity and the sensorimotor 
grounding of mathematics 
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1 Introduction 
Hearing the word “mathematics” often conjures up images of boring high 
school lectures and arduous problem sets. To many of us, mathematics 
seems like an overly abstract and seemingly untouchable subject matter, 
removed from any connection to the real world, and at the same time rigid 
and unwieldy. The mathematician Zagier (2012: 16) writes that “most peo-
ple cannot begin to imagine how mathematics and pleasure can be related at 
all”, and he says that some people are even “filled with dread at the mere 
thought of mathematics” (ibid. 12). 

In this paper, we highlight the many ways in which math and creativity 
are connected. We argue that the inability to see the more creative aspects is 
part of what makes math seem so dreary to many. And we take an embodied 
stance on creativity in math, arguing that much of what can be called crea-
tive in this subject area arises from spatial mental imagery and the sen-
sorimotor grounding of mathematical concepts. We discuss numerous ex-
periments on mathematical metaphors such as MORE IS UP, MORE IS RIGHT 
and MORE IS BIGGER. Together, these studies support the existence of con-
nections between our sense of number and our sense of space. Alongside 
these experimental studies, we discuss how the interplay between mathe-
matics and the arts provides evidence for the spatial nature of creativity in 
mathematics. 

 
 



2 Mathematics, art and space 
Many people are unaware of the intricate connections mathematics has with 
the arts. Sometimes mathematics is reflected in art, and sometimes art leads 
to the discovery of new mathematics. In this section, we discuss examples 
of this interplay between these seemingly different fields, and we point out 
that a common theme that connects mathematics and the arts is their in-
volvement in space and spatial creativity. After that, we discuss experi-
mental evidence supporting a mental connection between math and space. 

One example of the link between creativity and mathematics is seen in 
Renaissance art. During this epoch, artists became increasingly interested in 
representing the real world in spatially accurate perspectives. To do so, art-
ists had to develop principles that would enable the projection of three-
dimensional space onto the two-dimensional space of a canvas. This, in 
turn, led to the development of an entirely new branch of mathematics: pro-
jective geometry. Kline (1967: 230) says that “The works of the Renais-
sance artists are hung in art museums. They could, with as much justifica-
tion, be hung in science museums.” Thus, projective geometry is a branch 
of mathematics that can arguably be seen as stemming from the creative 
exploration. 

Another example of the intricate connections between space, art and 
mathematics is “hyperbolic crocheting”. Hyperbolic spaces are an essential 
part of Non-Euclidian geometry, but Bellos (2010: 383) rightly calls hyper-
bolic geometry “an utterly counter-intuitive type of geometry”. In fact, it 
has been claimed that it is impossible to build a stable real-world model of 
hyperbolic spaces that could be used to demonstrate how these spaces look 
like (cf. discussion in Henderson & Taimiða, 2001). Because of this, it was 
hard to come up with a consistent mental image of how a hyperbolic space 
might look like, making the topic elusive and literally difficult to grasp. But 
then, the Latvian mathematician Daina Taimiða stumbled upon a way of 
constructing these spaces while crocheting. She discovered that hyperbolic 
spaces can be created following certain stitching patterns, an idea that was 
later formalized in Henderson and Taimiða (2001). This example demon-
strates how something that was previously unimaginable and abstract has 
been made concrete and tangible through the creative exercise of crochet-
ing. 

A final example of the development of new mathematics through art is 
origami, which recently has underwent a resurgence of interest due to the 
development of computational origami (e.g., Demaine & O’Rourke, 2007), 
a field that has great prospects of producing efficient engineering and de-
sign structures that use minimal space when folded, but that can serve nu-
merous useful functions when expanded. Computational origami builds on a 
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set of axioms that were discovered by Humiaki Huzita, a Japanese-Italian 
mathematician and origami artist. Again, we can see that a form of art (ori-
gami) drove the development and discovery of new mathematics. 

Across these different examples it is clear that arts and mathematics are 
linked through their common involvement with space. Other examples of 
this connection include the mathematical art of M.C. Escher, the mathemat-
ics of tessellation in Arab mosaics, fractal art, and the aesthetically pleasing 
visuospatial proofs of the Pythagorean theorem (see Nelsen, 1993). 

It could be argued that art and mathematics cross-foster each other only 
when both already share the common denominator of space. However, this 
common denominator sometimes needs to be cognitively created afresh, 
which is a creative act. A case in point is the number i (the square root of 
negative one). For most of its history, i has been elusive and its status as a 
number was controversial. Lakoff and Núñez (2000, ch. VI:3), Mazur 
(2003) and Fauconnier and Turner (2001) argue that the concept of the 
number i becomes graspable once one mentally projects i and its multiples 
onto a number plane. Mazur (2003) argues that the creative act of coming 
up with the spatial image of i being located on a number plane played a piv-
otal role in the cultural acceptance of this concept. Moreover, the spatial 
view of this number unlocks new mathematics (such as polar coordinate 
geometry) which can then be applied to i. 

To conclude this section, it seems that the history of mathematics, as 
well as the history of arts, support the idea that spatial mental imagery plays 
a role in leading to novel and ultimately creative insights in mathematics. 

3 Embodied mathematics and experiments 
Lakoff and Núñez (2002) use Conceptual Metaphor Theory (Lakoff & 
Johnson, 1980; Gibbs, 1994) to analyze mathematical ideas (see also 
Núñez, 2005; 2007). They propose that mathematics can be seen as a sys-
tem of metaphorical mappings such as ARITHMETIC IS OBJECT COLLECTION 
or ARITHMETIC IS MOTION ALONG A PATH. Alongside this research, mathe-
maticians have also discussed how some of the seemingly abstract axioms 
at the foundation of mathematics (e.g., negative times negative yields posi-
tive) are grounded in concrete physical principles (Kline, 1967: 371). 

Alongside this more theoretical perspective, psychologists, cognitive 
scientists and neuroscientists have explored experimentally whether there 
are mental connections between space and mathematics. Dehaene, Bossini 
and Giraux (1993) demonstrated that Western Europeans seem to think of 
numbers as being aligned on a left-to-right going number line. These re-
searchers found that when participants saw relatively larger numbers on a 
screen (say, 8 instead of 2), they were faster to press a button with their 



right hand than with their left hand. This is interpreted as showing that if the 
response is consistent with a horizontal mental number line, responses are 
sped up. This general finding has been replicated in more than 100 experi-
ments (see review in Wood, Nuerk, Willmes & Fischer, 2008), and it can be 
taken to suggest a mapping that can be called MORE IS RIGHT. 

Other studies support a vertical mapping, in line with the metaphor 
MORE IS UP (cf., Lakoff, 1987: 276-277). For example, Hartmann, Grabherr 
and Last (2011) found that participants generated “higher” numbers when 
their bodies were moved upwards, and “lower” numbers when their bodies 
were moved downwards. In a similar vein, Winter and Matlock (2013) 
found that when participants were asked to call out numbers while they 
moved their head rhythmically upwards and downwards, they generated 
larger numbers when looking upwards. Sell and Kaschak (2012) found that 
when participants read sentences that contained quantity information such 
as the words “more” or “less”, they were quicker to respond with an up-
wards oriented response button to larger implied quantities, and with a 
downwards oriented response button to smaller implied quantities. 

Another mapping that has gained experimental support is MORE IS 
BIGGER, or QUANTITY IS SIZE. For example, when participants were shown 
relatively “large” numbers (numerically speaking), they were quicker to 
respond if the number was presented in larger font (Henik & Tzelgov, 
1982). Hurewitz, Gelman and Schnitzer (2006) found participants to sys-
tematically overestimate the quantity of dots if these covered more area. 
These results show that the mental concepts of size and numerical quantity 
are interacting with each other, in line with a metaphorical mapping of 
physical extent to numerical quantity. 

While these studies provide evidence for conceptual mappings such as 
MORE IS RIGHT, MORE IS UP or MORE IS BIGGER, there is abundant evidence 
for mental connections between space and numbers in the field of neurosci-
ence. Many neuroscientific studies on this topic have shown that the parietal 
cortex becomes activated when participants process numbers or quantities 
(Hubbard, Piazza, Pinel, & Dehaene, 2005; Pinel, Piazza, Le Bihan, & 
Dehaene, 2004). This brain area is not only implicated in the processing of 
number and quantity, it is also implicated in the processing of space, there-
fore, indicating that the mental connection between space and numbers is 
mirrored by a neurological connection as well. 

Compared to the high-level interactions between the arts, mathematics 
and space discussed in section 3, the experimental results discussed in this 
section are located at a much lower level, focusing on simple things such as 
mental arithmetic or numerical representation. The connection between ab-
stract mathematics and simple numerical representations still needs to be 
made. However, initial evidence already supports the idea that the two lev-
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els are connected, and that spatial thinking in abstract mathematics builds 
on spatial thinking about basic numbers and simple mathematical opera-
tions. For example, when mathematics student explain abstract proofs from 
calculus, they tend to make co-speech gestures (see, e.g., Marghetis & 
Núñez, 2013), many of which are in line with the basic numerical represen-
tations that are discussed in the experimental studies mentioned above. 

4 MORE IS BIGGER in mental arithmetic 
Both for abstract mathematical concepts and the mental representation of 
numbers, spatial thinking has been claimed to play a heavy role. But, cur-
rently there is not much experimental evidence to support that idea that the 
spatial concepts discussed above play a role in doing math. In this section, 
we discuss a survey-based study that explores the role of the conceptual 
metaphor MORE IS BIGGER in performing simple arithmetic problems. The 
study seeks evidence for the activation of size-based concepts while compu-
ting routine addition and subtraction. A total of 203 University of Califor-
nia, Merced, undergraduates took part in the study and received extra credit 
in an undergraduate social sciences course. All participants were native 
speakers of English. Each received a two-page study, of which the first page 
contained the following instructions: 

 
“On the next page, you will see a simple math equation above a box. In-
side the box, you will see “=” preceded by the operator symbol “+” or 
“-“. Your job is to fill in the blanks by drawing circles to match the nu-
merical values in the math equation above the box. For example, for the 
number “6”, you would draw 6 circles. Please draw your circles as 
quickly as possible. You can turn the page now.” 

 
 
 
 
 
 
 
 

 
 
 
Fig. 1: Example stimulus (addition condition) from the drawing experiment. 

 



There were two conditions. Each participant was either in an addition 
condition (they saw either 3+2=5 or 2+2=4), or in a subtraction condition 
(they saw either 7-2=5 or 6-2=4). We predicted that addition should tacitly 
trigger the numerical concept “more” because it represents an increase in 
quantity, and subtraction should trigger the concept “less” because it repre-
sents a decrease in quantity. If these concepts are indeed mentally related to 
conceptions of size, differences in the physical size of the circles should 
arise. In other words, it should be the case that participants draw slightly 
larger outcome circles for addition than for subtraction. 

We measured the rectangular area covered by circle groups by multiply-
ing the largest horizontal extent of the group of circles with the largest ver-
tical extent. Participants drew circle groups in clusters (127 participants) or 
horizontally lines (76). However, the interpretation of the results that we 
report below did not differ between cluster-drawers and line-drawers, thus 
we only report analyses that combined these two drawing strategies1.  

The results are displayed in Fig. 2. Participants in our study drew circle 
groups about 3.04 square centimeter larger in the addition condition 
(M=5.27) than participants in the subtraction condition (M=8.31) 
(t(191.784)=4.25, p<0.001). This is in line with the idea that people natural-
ly think about an increase in quantity, and concomitantly, about an increase 
in physical size when they are doing addition. So, even though the circle 
size is an irrelevant dimension with respect to solving this task (critically, 
we never asked people to pay attention to the size of the circles), we ob-
served differences in area that are consistent with the idea that MORE IS 
BIGGER plays a role in mental arithmetic. These findings are also consistent 
with the idea that people use metaphors such as ARITHMETIC IS OBJECT 
COLLECTION (Lakoff & Núñez, 2000) to reason about operations such as 
addition and subtraction. 

 
 
 
 
 
 
 
 

                                                             
1 Only 12 participants drew circles arranged as vertical lines. Because these were too few to 

be analyzed separately, we excluded these 12 data points (6% of the overall data) from the 
analysis. All other items (215) were considered for the analysis. The four distances were meas-
ured by a research assistant. To assure reliability of measurements, the first author recoded 
10% of the items. The two measurements correlated well with each other (r=0.89) and the 
average deviation between coders was low (~1.11 mm). 
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Fig. 2: Overall circle area in addition and subtraction condition. Error bars 
represent standard errors. 

 
It is worth noting that we only discovered an effect of size, and not an 

overall dislocation of the group of circles. For example, if participants were 
thinking about arithmetic in terms of motion along a path in this experi-
ment, we would have expected the group of circles to be dislocated right-
wards with addition (consistent with the metaphor MORE IS RIGHT) and left-
wards with subtraction. However, this is not what we found. Apparently 
participants were more likely to respond in a way that is consistent with 
MORE IS BIGGER in this task. There are several reasons why this could be the 
case. First, MORE IS RIGHT is not expressed in English, but MORE IS BIGGER 
is. When we talk about numbers, we either use the language of size (“this is 
a huge sum”) or the language of verticality (“this is a high number”), but we 
do not say “this number is more towards the right” to say that a number is 
larger, except for maybe some really special circumstances (e.g., when talk-
ing about visually represented sequences). However, if language entrench-
ment were the only factor, we would also expect to find the circles to be 
physically higher in the addition condition because of the prevalence of 
talking about numbers in terms of verticality. This is not what we found. 

Another reason why participants were more likely to draw larger out-
come circles after addition rather than higher outcome circles might have to 
do with the fact that circles can be more readily interpreted as object collec-
tions, such as a pile of gumballs or pile of popcorn. When the quantity of 
such collections is varied, the overall size of the collection is expected to 
change, but not the horizontal or vertical dislocation of the collection. Thus, 
the task that we employed might be more readily interpreted in lines with 
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ARITHMETIC IS OBJECT COLLECTION and the consistent metaphor MORE IS 
BIGGER, than with ARITHMETIC IS MOTION ALONG A PATH. Which metaphors 
structure our thinking about arithmetic probably relies to some extent on the 
nature of the stimuli used and the nature of the task. 

We have to admit, however, that there is an important alternative expla-
nation for the data presented above. It could potentially be the case that we 
observed smaller circles after subtraction simply because with our subtrac-
tion items, the first number in the sequence was necessarily larger (7-2=5, 
6-2=4) than with addition (3+2=5, 2+2=4). Maybe participants were draw-
ing smaller outcome circles because these seemed smaller compared to 6 or 
7. To disentangle our current hypothesis from this alternative explanation, 
future work needs to test zero addition and subtraction such as 5+0=5 and 5-
5=0. 

5 Implications and Conclusions 
We discovered that when people drew circles to depict numbers in arithme-
tic problems, they drew larger circle groups for addition than for subtrac-
tion. Overall, these results lend support to the idea that mathematics imports 
conceptual structure from physical experiences, in line with such metaphor-
ical mappings as MORE IS BIGGER. From this perspective, mathematics is in 
fact not that abstract, but instead deeply connected to concrete notions such 
as physical size. 

Language reflects this as well: We use the language of physical size to 
talk about numerical quantities, such as when we say, “This is a huge sum” 
or “This is a large number”. And it seems to be the case that a number of 
quantity terms can be historically traced back to words that describe size or 
physical extent, for example, the word “more” goes back to the Proto-Indo-
European root *me- “big”, and “quantity” goes back to the Latin word 
quantitatem “relative greatness or extent” (Harper, 2012). So, our experi-
ment (section 4) and other experiments on mathematical cognition (section 
3) mesh nicely with these observations from synchronic and diachronic lin-
guistics. There seems to be a lot of converging evidence that suggests that 
math is in fact not that abstract. 

What are the implications of this embodied perspective of mathematics? 
In this section, we will discuss how this approach can be helpful in teaching 
mathematics, and how it can be used to get more people to become interest-
ed in this subject. Many people see mathematics as dreary or daunting. 
Some people actively try to steer away from this subject, and some of these 
people can even be classified as “innumerates”, as mathematical illiterates 
(Paulos, 1988). Some people even have innate or neurological mathematical 
disorders, such as dyscalculia. Yet, in our everyday lives, we constantly 
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need to add and subtract quantities, for example, when checking whether we 
have enough money to buy doughnuts and coffee at the diner, or when 
planning dinner parties. Moreover, much of our everyday work life requires 
us to perform simple calculations with numbers and quantities. How might 
embodied mathematics be helpful here? 

If people really do think about numbers in terms of space, then we 
should try to foster these thought patterns. Bryant and Squire (2001: 175) 
mention that many developmental psychologists viewed the connection 
between space and numbers “in a negative way”. They say that space for 
these psychologists “is part of the problem in children’s mathematics, not 
part of the solution” (cf. discussion in Walsh, 2003). An embodied perspec-
tive would argue that the way we teach mathematics should be in line with 
our “natural mappings”. Learning and teaching should be consistent with 
our natural tendencies to construe the world, and it should follow the natural 
way in which the human mind develops (Egan, 1997). Thus, if we acquire 
spatial metaphors of numbers such as MORE IS UP and MORE IS BIGGER 
through embodied interaction with the world early on in our lives, we 
should embed these metaphors in teaching rather than trying to avoid them. 

Some strands of mathematical education are already in line with this 
idea. For example, many mathematical textbooks for kindergarteners and 
first graders are colorful and full of concrete physical examples, and a lot of 
them reinforce such important concepts as the number line (consider the 
Number Line Frog that appears in many American textbooks). However, it 
seems that once children proceed to middle school and high school mathe-
matics, a lot of this concrete approach is given up, even though, as Lakoff 
and Núñez (2000) argue, much of “higher” mathematics seems to also rely 
on spatial mental imagery and other embodied concepts. It seems that this 
abstract way of teaching mathematics might unduly limit the creative explo-
ration of this subject matter. 

Middle school and high school mathematics teaching is typically fairly 
disembodied. However, in recent years, there is a growing interesting in 
actively pushing a more embodied perspective in mathematics education 
(see also, Núñez, Edwards, & Matos, 1999; Núñez, 2007). For example, the 
Mathematical Imagery Trainer (Howison, Trninic, Reinholz, & Abraham-
son, 2011; Euson & Abrahamson, 2005) uses movements in line with MORE 
IS UP to teach fractions and proportional progression (2:3 – 4:6 – 6:9). And, 
Cress, Fischer, Moeller, Sauter and Nuerk (2010) used a digital dance mat 
to teach relative numerical magnitudes. And, more and more teaching tools 
that promote numeracy in patients with dyscalculia start emphasizing space 
to increasing extents (Wilson, Dehaene, Pinel, Revkin, Cohen & Cohen, 
2006). 



We offer some ideas here. First, the involvement of mathematics in art 
and the involvement of art in mathematics (discussed in section 2) could be 
used as another avenue in making mathematics more interesting and more 
graspable. Adults and children who cannot or do not want to realize the 
beauty of math themselves might be motivated if confronted with some of 
the many examples that highlight the more creative aspects of mathematics. 
Zagier (2012: 16) points out that the “mathematics that everyone learns in 
school is almost always just a collection of recipes for everyday use or, at 
best, in science.” Some of the most creative, interesting and aesthetically 
pleasing aspects of mathematics are never discussed in school mathematics. 
Even though some examples discussed in section 2 might not be immediate-
ly relevant for specific applications (e.g., leading towards calculus or linear 
algebra, topics important in engineering), they might be useful in keeping 
students interested in mathematics and making it seem like a topic that is 
less removed and abstract than is generally believed. 

Second, given that we already have evidence for MORE IS BIGGER, MORE 
IS UP and MORE IS RIGHT, metaphor research needs to address such questions 
as: What are the specific advantages conferred by these different meta-
phors? Does structuring number space in one way as opposed to another 
help in certain situations? Do different people have different propensities to 
think about numbers in one way or another? And, under which conditions 
does which metaphor become salient? We also need to investigate further 
how these relatively low-level metaphors relate to more abstract and high-
level mathematics such as calculus and linear algebra. Addressing these 
questions will be crucial for developing more advanced and more targeted 
embodied teaching tools. 

Zagier (2012: 12) contrasts mathematics from other fields by pointing 
out that while other sciences “are clearly characterized according to the ob-
jects they study: heavenly bodies, living things, human relationships”, 
mathematics studies many different objects, some of which seem – at first 
sight – fairly abstract. For example, entities such as “sets”, “equations” or 
“imaginary numbers” appear to have no straightforward connection to the 
real world. However, when there is a lack of concrete physical objects, edu-
cation can create these objects, sometimes in a physical form, such as in 
hyperbolic crocheting, and sometimes in a mental form, such as in the “im-
aginary number line” of i. In this paper, we have argued that creating such 
mental objects can aid mathematical thinking, and more generally, we have 
argued that an embodied approach will prove useful for teaching mathemat-
ics. 
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