
 1

Tutorial

Solving the Monty Hall Problem with Simulations:

A super-simple intro to loops and if statements in R

Bodo Winter1

Last updated: January 12, 2012

Introduction

Have you heard of the Monty Hall problem? In this simple tutorial, we’re going to

solve this problem by means of simulation – if you haven’t worked with loops and

if statements in R before, this will be useful for you. If you already know this stuff

– stay tuned… the tutorial might still be fun!

So, what’s the Monty Hall problem2? Monty Hall was the host of the

famous gameshow Let’s make a deal which was popular in the 70s and had many

offshoots in other countries (e.g. Geh aufs Ganze! in Germany). After a series of

deals, each competitor in this show would be confronted with three doors, only

one of which lead to the desired prize – usually a car. Behind the other two doors

were things that nobody would want, e.g. a goat.

1 For updates and other tutorials, check my webpage www.bodowinter.com. If you have any
suggestions, please write me an email: bodo@bodowinter.com
2 For an extensive overview, check Wikipedia: http://en.wikipedia.org/wiki/Monty_Hall_problem

 2

(Source: http://en.wikipedia.org/wiki/Monty_Hall_problem)

The competitor would initially choose a door and then the host would open

one of the remaining doors (always one that didn’t conceal the prize, of course).

After that, the participant was given the choice to switch doors or not to switch

doors. So, in the above picture, let’s say you initially chose door 1. Monty Hall

opens door 3 and there is – lo and behold – a goat. Now you’re given the choice

to stay at door 1 or to switch to door 2. What is a better strategy, to switch or not

to switch? Or does it matter at all? Before you read on, think about this for a

second: What is your initial and intuitive response?

Marilyn vos Savant, once in the Guinness Book of Records for having the

highest measured IQ, published a solution to the Monty Hall problem in her

column in the magazine Parade… This solution indicated that it’s actually a

better strategy to switch doors. To many, this seemed extremely counterintuitive

because at first sight, the probability behind each of the doors should be the same:

1/3 a chance of winning the prize. A deluge of letters to the editors flooded in,

some 10,000 responses, stating how Ms. vos Savant was wrong, she just had to be!

How could she dare to publish such a simple logical mistake, how preposterous!!

Many of the letters were from highly educated people. In the end, they were all

proven wrong and Marilyn’s solution stood the test of time.

 3

So, why don’t we try to answer this question for ourselves, using R. We will

solve the Monty Hall problem in a brute force fashion, simply by simulating a

10,000 runs of choices between three doors… and calculating whether switching

or not switching is better.

The R code that we need to do for this is super-simple3. Have a quick look at

the R code in the box, that’s all we’re going to need! The tutorial will guide you

through this code.

So, let’s get started!!! First, we need to make a vector “doors” with three

doors: “A”, “B” and “C”.

Then, we need to create an object into which we store all the information

that is generated by the loop.

3 It’ll be really good for you if you have Tinn-R (http://sciviews.org/Tinn-R/) or any other external
device to store your R code (e.g. a text editor). Then you can type everything in, and as soon as
you’re finished with the loop, copy it into the R console.

 4

Now, we need the loop. The general structure of loops in R is the following:

You put everything that should be executed repeatedly into the curly brackets.

Into the regular brackets, you define how often the loop should be executed. The

expression i in 1:1000 means that your so-called “running variable” i will be

chosen from the vector of numbers between 1 and 1000, so the variable i will be

“1” in the first run-through, “2” in the next one and so on.

Now, let’s go into the loop. For each particular game show, we need to place

the prize behind one of the doors. We do this by picking one door at random from

the character vector doors. The command sample() simply puts the three doors

into a random order, and then we index this randomly assorted vector with [1],

taking the first element of that vector. The result of this is saved into the object

prize.

Next, we need to simulate how the participant in the game show picks a

random door. For this, we do exactly the same thing as in the last step, except that

we save it into the object pick. Because we sample two times, prize and pick can

be the same door (e.g. “A”) – this simulates a success for the gameshow

participant.

Now comes the most crucial step. The game master chooses a door other

than the one that was picked by the participant… and of course, he doesn’t choose

 5

the door with the prize. So, we sample from the doors vector, but we don’t take an

element that equals prize. Also, we don’t want our simulation to pick the door the

participant has chosen, so we should something that is not equal to pick either.

The command which(doors != pick) returns a number, which is the position of the

vector door that is not equal to pick. You can combine multiple conditions with

the & operator. So, which(doors != pick) gives you a number, and you can use

that number to index the doors vector. This is done by the composite command

doors[which(doors != pick & doors != prize)], which will give you a character

(e.g. “B”) which is the door that is not chosen by the participant and that is also

not the door with the prize. Now, in case the vectors prize and the pick are equal,

which() will actually return two numbers (because Monty Hall could open either

of two doors). For this case, we need to pick one element by indexing [1] .

However, this indexing should be done on the randomized vector – otherwise we

end up picking always the order of the doors vector, therefore we need to use

sample(), too, and we end up with the following command:

We already have the door that is picked under the no-switching condition,

let’s turn to simulating another participant that – on the same prize/goat layout –

would have switched.

Simple, isn’t it? We simulate switching by taking one element of the vector

doors which was not the original pick and not the door that was opened.

Now, we use two if commands to see who wins: the switching or the non-

switching participant. Within the curly brackets of the if command, you put what

ought to be executed if a certain condition is met. Within the regular brackets, you

state what the condition is. In this case, if pick==prize, we assign the character

 6

“noswitchin” to that position in the xdata results vector. Importantly, we need to

concatenate this new element with the old vector – if we don’t do this, our xdata

vector would always only have one element after you completed the loop…

namely, the element of the last cycle.

Now, it’s time to enter the whole loop into R! So, copy everything from

xdata=c() to the final curly bracket of the loop into the R console.

We conclude by counting how many instances of “switchwin” and

“noswitchwin” occur in the xdata results.

That’s it! The length of the switching should be approaching 666 in a series

of 1,000 simulations. The more simulations you do (try 10,000!), the more you

will approach a ratio of 2/3 for the switching case and 1/3 for the no-switching

case. We proved Marilyn vos Savant right, switching is better!! Yay!!

But hey, let’s just have a quick look at her solution, which was much more

analytical and didn’t use simulations at all. Let’s simply enumerate all the

possible arrangements (1-3). These will be:

 Door A Door B Door C

(1) Prize Goat Goat

(2) Goat Prize Goat

(3) Goat Goat Prize

 7

So, the prize will either be behind door A (arrangement 1), door B

(arrangement 2) or door C (arrangement 3), and the goats will be behind the two

other doors. Let’s say our gameshow participant always picked Door A. If you

don’t switch, your chance of winning is exactly 1/3, as expected. Only the first of

the three arrangements will give you the prize. If you do switch, then there’s two

arrangements (2) and (3) where you can win, thus your chances are 2/3 of

winning. There only arrangement where you wouldn’t win is arrangement 1.

Crucially, all of this only works because the gameshow host would not open

the door that contains the prize. So in (2), Monty Hall would have opened door

C… in (3), he would have opened door B. This means that the probability of

winning the prize with the switching strategy is 2/3 as opposed to 1/3 in the no-

switching case. The argument I made in the last paragraph for initially picking

arrangement 1 also generalizes to initially picking arrangement 2 or 3.

Another way to wrap your head around this is that initially (on your first

pick), you start with an exactly 1/3 probability. That means your chance of not

winning is 2/3, because there are two other doors. When the gameshow master

one of the two remaining doors, he halves the chances of not winning for these

two doors. 2/3 divided by two equals 1/3, which is the chance of not winning. The

chance of winning for the two doors is thus 1-(1/3) which is 2/3. The chance of

your first pick being the winning door is unaffected by the game master’s door-

opening action and remains 1/3 …

Cool, isn’t it?

