Tutorial

Solving the Monty Hall Problem with Simulations:

A super-simple intro to loops and if statements in R

Bodo Wintef

Last updated: January 12, 2012

Introduction

Have you heard of the Monty Hall problem? In thmde tutorial, we’re going to
solve this problem by means of simulation — if y@ven't worked with loops and
if statements in R before, this will be useful fouyti you already know this stuff
— stay tuned... the tutorial might still be fun!

So, what's the Monty Hall problef? Monty Hall was the host of the
famous gameshowet’s make a dealhich was popular in the 70s and had many
offshoots in other countries (e @eh aufs Ganzah Germany). After a series of
deals, each competitor in this show would be coné&d with three doors, only
one of which lead to the desired prize — usualtaia Behind the other two doors

were things that nobody would want, e.g. a goat.

! For updates and other tutorials, check my webpage.bodowinter.comlf you have any
suggestions, please write me an enfto@bodowinter.com
2 For an extensive overview, check Wikipedkitp://en.wikipedia.org/wiki/Monty Hall_problem

1

(Source: http://en.wikipedia.org/wiki/Monty Hall gislem)

The competitor would initially choose a door andrthithe host would open
one of the remaining doors (always one filidn’'t conceal the prize, of course).
After that, the participant was given the choiceswagtch doors or not to switch
doors. So, in the above picture, let's say youalkyt chose door 1. Monty Hall
opens door 3 and there is — lo and behold — a §mat. you're given the choice
to stay at door 1 or to switch to door 2. What Isetter strategy, to switch or not
to switch? Or does it matter at all? Before youdrea, think about this for a

second: What is your initial and intuitive respdhse

Marilyn vos Savant, once in the Guinness Book ofdRés for having the
highest measured 1Q, published a solution to thentMiddall problem in her
column in the magazin®arade.. This solution indicated that it's actually a
better strategy to switch doors. To many, this sskextremely counterintuitive
because at first sight, the probability behind eaictine doors should be the same:
1/3 a chance of winning the prize. A deluge ofelettto the editors flooded in,
some 10,000 responses, stating how Ms. vos Sawatwong, she just had to be!
How could she dare to publish such a simple logisistake, how preposterous!!
Many of the letters were from highly educated peop the end, they were all

proven wrong and Marilyn’s solution stood the t@fstime.

So, why don’t we try to answer this question forsalves, using R. We will
solve the Monty Hall problem in a brute force fashisimply by simulating a
10,000 runs of choices between three doors... amileéihg whether switching

or not switching is better.

The R code that we need to do for this is supeplginHave a quick look at
the R code in the box, that's all we’re going tedleThe tutorial will guide you
through this code.

dDD]’:S {_ I l:"j'la."; "B"; "C":I

xdata=ci)

for({i in 1:1000)

{

prize <- sample (doors) [1]

pick <- sample(doors) [1]

open <- sample (doors[which(doors '= pick & doors '= prize)])[1]
switchyes <-— doors[which(doors '= pick & doors '= open)]
ifipick==pricze] {xdata=c(xdata, "noswitchwin®™)}
ifiswitchyes==prize){=xdata=c (xdata,"switchwin™)}

H

lengthiwvhichixdata == "awitchwin®™))
lengthiwhich(xdata == "noswitchwin®™))

So, let's get started!!! First, we need to makeeator “doors” with three
doors: “A”, “B” and “C”.

dDD]’:S {_ I l:"j'la."; "B"; "C ":I

Then, we need to create an object into which weesadl the information
that is generated by the loop.

2 1t'll be really good for you if you have Tinn-Ritp:/sciviews.org/Tinn-B/or any other external
device to store your R code (e.g. a text editdnprTyou can type everything in, and as soon as
you're finished with the loop, copy it into the Brsole.

xdata=c ()

Now, we need the loop. The general structure gbdaa R is the following:
You put everything that should be executed repéateto the curly brackets.
Into the regular brackets, you define how oftenltdop should be executed. The
expressioni in 1:1000 means that your so-called “running variablewill be
chosen from the vector of numbers between 1 an@,1€9the variable will be
“1” in the first run-through, “2” in the next oned so on.

for({i in 1:1000)
i
b

Now, let's go into the loop. For each particulamgashow, we need to place
the prize behind one of the doors. We do this lokipg one door at random from
the character vectatoors The commandample()simply puts the three doors
into a random order, and then we index this rangiaaskorted vector with [1],
taking the first element of that vector. The resilthis is saved into the object

prize

prize <- sample (doors) [1]

Next, we need to simulate how the participant i@ gfame show picks a
random door. For this, we do exactly the same thgm the last step, except that
we save it into the objegick Because we sample two tim@size andpick can
be the same door (e.g. “A”) — this simulates a ssscfor the gameshow
participant.

pick <- sample (doors) [1]

Now comes the most crucial step. The game mastosels a door other

than the one that was picked by the participantd.afrcourse, he doesn’t choose

the door with the prize. So, we sample fromdbersvector, but we don’t take an
element that equajwrize Also, we don’t want our simulation to pick thecddhe
participant has chosen, so we should somethingishabt equal tqick either.
The commanavhich(doors != pick)eturns a number, which is the position of the
vectordoor that is not equal tpick You can combine multiple conditions with
the & operator. Sowhich(doors != pick)gives you a number, and you can use
that number to index théoors vector. This is done by the composite command
doors[which(doors != pick & doors != prize)]which will give you a character
(e.g. “B”) which is the door that isot chosen by the participant and that is also
not the door with the prize. Now, in case the vectoige and thepick are equal,
which() will actually return two numbers (because Montylldauld open either
of two doors). For this case, we need to pick olmment by indexing1].
However, this indexing should be done on the randedvector — otherwise we
end up picking always the order of tdeors vector, therefore we need to use

sample()too, and we end up with the following command:

open <- sample (doors[which(doors '= pick & doors '= prize)])[1]

We already have the door that is picked under tiswitching condition,
let’s turn to simulating another participant thabr-the same prize/goat layout —

would have switched.

switchyes <— doors[which(doors '= pick & doors !'= open)]

Simple, isn’t it? We simulate switching by takingeoelement of the vector

doorswhich was not the original pick and not the dd@ttwas opened.

Now, we use twaf commands to see who wins: the switching or the non
switching participant. Within the curly bracketstbeif command, you put what
ought to be executed if a certain condition is déthin the regular brackets, you

state what the condition is. In this casepitk==prize, we assign the character

“noswitchin” to that position in th&dataresults vector. Importantly, we need to
concatenate this new element with the old vectibrwe don’t do this, ouxdata
vector would always only have one element after gompleted the loop...
namely, the element of the last cycle.

if(pick==prize) {xdata=c (xdata, "noswitchwin®™) }
ifiswitchyes==prize) {xdata=c (xdata, "awvitchwin™) }

Now, it's time to enter the whole loop into R! Smpy everything from

xdata=c()to the final curly bracket of the loop into thecBnsole.

We conclude by counting how many instances of ‘©wiin” and

“noswitchwin” occur in thexdataresults.

lengthivhichixdata == "zwitchwin®™))
lengthiwvhichi(xdata == "noswitchwin®™))

That's it! The length of the switching should bgsagaching 666 in a series
of 1,000 simulations. The more simulations you ttg £0,000!), the more you
will approach a ratio of 2/3 for the switching cam®d 1/3 for the no-switching
case. We proved Marilyn vos Savant right, switchgigetter!! Yay!!

But hey, let’s just have a quick look at her sauatiwhich was much more
analytical and didn't use simulations at all. Lessnply enumerate all the

possible arrangements (1-3). These will be:

Door A Door B Door C

(1) Prize Goat Goat
(2) Goat Prize Goat
3) Goat Goat Prize

So, the prize will either be behind door A (arramget 1), door B
(arrangement 2) or door C (arrangement 3), andytia¢s will be behind the two
other doors. Let's say our gameshow participaniagdwpicked Door A. If you
don’t switch, your chance of winning is exactly 1/3 eapected. Only the first of
the three arrangements will give you the prizeod do switch, then therets/o
arrangements (2) and (3) where you can win, thus yhances are 2/3 of

winning. There only arrangement where you wouldnft is arrangement 1.

Crucially, all of this only works because the gahweg host woulchot open
the door that contains the prize. So in (2), Modgll would have opened door
C... in (3), he would have opened door B. This metias the probability of
winning the prize with the switching strategy i8 2/s opposed to 1/3 in the no-
switching case. The argument | made in the lasagraph for initially picking

arrangement 1 also generalizes to initially pickemgngement 2 or 3.

Another way to wrap your head around this is timaially (on your first
pick), you start with an exactly 1/3 probabilityhdt means your chance bt
winning is 2/3, because there are two other doors. Whergdmeshow master
one of the two remaining doors, he halves the agmménot winningfor these
two doors. 2/3 divided by two equals 1/3, whiclthis chance ofot winning The
chance of winning for the two doors is thus 1-(MB8)ich is 2/3. The chance of
your first pick being the winning door is unaffettby the game master’s door-

opening action and remains 1/3 ...

Cool, isn't it?

