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Linear	models	and	linear	mixed	models	are	an	impressively	powerful	and	flexible	
tool	 for	 understanding	 the	world.	 This	 tutorial	 is	 the	 first	 of	 two	 tutorials	 that	
introduce	you	to	these	models.	The	tutorials	are	decidedly	conceptual	and	omit	a	
lot	of	the	more	involved	mathematical	stuff.	The	focus	is	on	understanding	what	
these	models	 are	doing	…	and	 then	we’ll	 spend	most	of	 the	 time	applying	 this	
understanding.	The	idea	is	to	bootstrap	your	knowledge	as	quickly	as	possible	so	
that	you	can	start	with	your	own	analyses	and	then	turn	to	more	technical	texts	if	
needed.	
	
	
You’ll	need	about	1	hour	to	complete	this	tutorial	(maybe	a	bit	more).	
	
	
	
	
So,	what	does	 the	 linear	model	do?	Assume	you	knew	nothing	about	males	and	
females,	and	you	were	interested	in	whether	the	voice	pitch	of	males	and	females	
differs,	and	if	so,	by	how	much.	
	
So	you	take	a	bunch	of	males	and	a	bunch	of	females,	and	ask	them	to	say	a	single	
word,	say	“mama”,	and	you	measure	the	respective	voice	pitches.	Your	data	might	
look	something	like	this:	
	 	

																																																								
1	For	 updates	 and	 other	 tutorials,	 check	 my	 webpage	 www.bodowinter.com.	 If	 you	 have	 any	
suggestions,	please	write	me	an	email:	bodo@bodowinter.com		
	
Please	cite	as:	
Winter,	B.	(2013).	Linear	models	and	linear	mixed	effects	models	in	R	with	linguistic	applications.	
arXiv:1308.5499.	[http://arxiv.org/pdf/1308.5499.pdf]	
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	 Subject	 Sex	 Voice.Pitch	
	 1	 female	 233	Hz	
	 2	 female	 204	Hz	
	 3	 female	 242	Hz	
	 4	 male	 130	Hz	
	 5	 male	 112	Hz	
	 6	 male	 142	Hz	
	
“Hz”	(Hertz)	is	a	measure	of	pitch	where	higher	values	mean	higher	pitch.	
	
You	 might	 look	 at	 this	 table	 and	 say	 that	 it’s	 quite	 obvious	 that	 females	 have	
higher	voice	pitch	than	males.	After	all,	 the	female	values	seem	to	be	about	100	
Hz	above	the	male	ones.	
	
But,	in	fact,	it	could	be	the	case	that	females	and	males	have	the	same	pitch,	and	
you	were	just	unlucky	and	happened	to	choose	some	exceptionally	high-pitched	
females	and	some	exceptionally	low-pitched	males.	Intuitively,	the	pattern	in	the	
table	seems	pretty	straightforward,	but	we	might	want	a	more	precise	estimate	
of	the	difference	between	males	and	females,	and	we	might	also	want	an	estimate	
about	how	likely	(or	unlikely)	that	difference	in	voice	pitch	could	have	arisen	just	
because	of	drawing	an	unlucky	sample.	
	
This	is	where	the	linear	model	comes	in.	In	this	case,	its	task	is	to	give	you	some	
values	 about	 voice	 pitch	 for	 males	 and	 females…	 as	 well	 as	 some	 probability	
value	as	to	how	likely	those	values	are.	
	
The	 basic	 idea	 is	 to	 express	 your	 relationship	 of	 interest	 (in	 this	 case,	 the	 one	
between	sex	and	voice	pitch)	as	a	simple	formula…	such	as	this	one:	
	
	 pitch	~	sex	
	
This	reads	 “pitch	predicted	by	sex”	or	 “pitch	as	a	 function	of	sex”.	Some	people	
call	 the	 thing	on	 the	 left	 the	 “dependent	variable”	 (the	 thing	you	measure)	and	
the	 thing	 on	 the	 right	 the	 “independent	 variable”.	 Others	 call	 the	 thing	 on	 the	
right	the	“explanatory	variable”	(this	sounds	too	causal	to	me)	or	the	“predictor”.	
I’ll	call	it	“fixed	effect”,	and	this	terminology	will	make	sense	later	on	in	tutorial	2.	
	
Now,	 the	world	 isn’t	 perfect.	 Things	 aren’t	 quite	 as	 deterministic	 as	 the	 above	
formula	suggests.	Pitch	is	not	completely	determined	by	sex,	but	also	by	a	bunch	
of	different	factors	such	as	language,	dialect,	personality,	age	and	what	not.	Even	
if	we	measured	all	of	these	factors,	there	would	still	be	other	factors	influencing	
pitch	that	we	cannot	control	for.	Perhaps,	a	subject	in	your	data	had	a	hangover	
on	the	morning	of	the	recording	(causing	the	voice	to	be	lower	than	usual),	or	the	
subject	 was	 just	more	 nervous	 on	 that	 particular	 day	 (causing	 the	 voice	 to	 be	
higher).	We	can	never	measure	and	control	all	of	these	things.	The	world	is	full	of	
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stuff	that	is	outside	the	purview	of	our	little	experiment.	Hence,	let’s	update	our	
formula	to	capture	the	existence	of	these	“random”	factors.	
	
	 pitch	~	sex	+	ε	
	
This	“ε”	(read	“epsilon”)	is	an	error	term.	It	stands	for	all	of	the	things	that	affect	
pitch	 that	 are	 not	 sex,	 all	 of	 the	 stuff	 that	 –	 from	 the	 perspective	 of	 our	
experiment	–	is	random	or	uncontrollable.	
	
The	formula	above	is	a	schematic	depiction	of	the	linear	model	that	we’re	going	
to	 build.	 Note	 that	 the	 part	 of	 the	 formula	 on	 the	 right-hand	 side	 conceptually	
divides	the	world	 into	stuff	 that	you	can	understand	(the	“fixed	effect”	sex)	and	
stuff	that	you	can’t	understand	(the	random	part	“ε”).	You	could	call	the	former	
the	“structural”	or	“systematic”	part	of	your	model	and	the	latter	the	“random”	or	
“probabilistic”	part	of	the	model.	
	

Hands-on	exercise:	Let’s	start!	
O.k.,	 let’s	move	to	R,	 the	statistical	programming	environment	that	we’ll	use	 for	
the	 rest	of	 this	 tutorial2.	 Let’s	 create	 the	dataset	 that	we’ll	use	 for	our	analysis.	
Type	in:	
	
	 pitch = c(233,204,242,130,112,142) 

sex = c(rep("female",3),rep("male",3)) 
	
The	first	line	concatenates	our	6	data	points	from	above	and	saves	it	in	an	object	
that	we	named	pitch.	 The	 second	 line	 repeats	 the	word	 “female”	3	 times	and	
then	 the	word	“male”	3	 times	…	and	concatenates	 these	6	words	 into	an	object	
that	we	named	sex.	
	
For	a	better	overview,	let’s	combine	these	two	objects	into	a	data	frame:	
	
 my.df = data.frame(sex,pitch) 
	
Now	we	have	 a	 data	 frame	object	 that	we	named	my.df,	 and	 if	 you	 type	 that,	
you’ll	see	this:	

	

																																																								
2	You	 don’t	 have	 R?	 Don’t	 worry,	 it’s	 free	 and	 works	 on	 all	 platforms.	 You	 can	 get	 it	 here:	
http://www.r-project.org/	You	might	want	 to	 read	a	quick	 intro	 to	R	before	you	proceed	–	but	
even	if	you	don’t,	you’ll	be	able	to	follow	everything.	Just	type	in	everything	you	see	in	dark	blue.	
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O.k.,	 now	we’ll	 proceed	with	 the	 linear	model.	We	 take	 our	 formula	 above	 and	
feed	 it	 into	 the	lm()	 function	…	except	 that	we	omit	 the	 “ε”	 term,	because	 the	
linear	model	function	doesn’t	need	you	to	specify	this.	
	
 xmdl = lm(pitch ~ sex, my.df) 
	
We	modeled	pitch	as	a	function	of	sex,	taken	from	the	data	frame	my.df	…	and	
we	saved	this	model	into	an	object	that	we	named	xmdl.	To	see	what	the	linear	
model	did,	we	have	to	“summarize”	this	object	using	the	function	summary():	
	
	 summary(xmdl) 
	
If	you	do	this,	you	should	see	this:	

	

	
	
Lots	 of	 stuff	 here.	 First,	 you’re	 being	 reminded	 of	 the	model	 formula	 that	 you	
entered.	Then,	 the	model	gives	you	the	residuals	(what	this	 is	will	be	discussed	
later),	and	the	coefficients	of	 the	 fixed	effects	(again,	explanations	 follow…	bear	
with	me	for	a	moment).	Then,	the	output	prints	some	overall	results	of	the	model	
that	you	constructed.	
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We	have	to	work	through	this	output.	Let’s	start	with	“Multiple	R-Squared”.	This	
refers	 to	 the	 statistic	 R2	 which	 is	 a	 measure	 of	 “variance	 explained”	 or	 if	 you	
prefer	less	causal	language,	it	is	a	measure	of	“variance	accounted	for”.	R2	values	
range	from	0	to	1.	Our	R2	is	0.921,	which	is	quite	high	…	you	can	interpret	this	as	
showing	that	92.1%	of	the	stuff	that’s	happening	in	our	dataset	is	“explained”	by	
our	model.	 In	this	case,	because	we	have	only	one	thing	in	our	model	doing	the	
explaining	(the	fixed	effect	“sex”),	the	R2	reflects	how	much	variance	in	our	data	is	
accounted	for	by	differences	between	males	and	females.	
	
In	general,	you	want	R2	values	to	be	high,	but	what	is	considered	a	high	R2	value	
depends	on	your	field	and	on	your	phenomenon	of	study.	If	the	system	you	study	
is	 very	deterministic,	R2	 values	 can	 approach	1.	But	 in	most	 of	 biology	 and	 the	
social	sciences,	where	we	study	complex	or	messy	systems	that	are	affected	by	a	
whole	 bunch	 of	 different	 phenomena,	 we	 frequently	 deal	 with	 much	 lower	 R2	
values.	
	
The	“Adjusted	R-squared”	value	is	a	slightly	different	R2	value	that	not	only	looks	
at	how	much	variance	is	“explained”,	but	also	at	how	many	fixed	effects	you	used	
to	do	the	explaining.	So,	in	the	case	of	our	model	above,	the	two	values	are	quite	
similar	 to	each	other,	but	 in	some	cases	the	adjusted	R2adj	can	be	much	 lower	 if	
you	have	a	lot	of	fixed	effects	(say,	you	also	used	age,	psychological	traits,	dialect	
etc.	to	predict	pitch).	
	
So	much	for	R2.	Next	line	down	you	see	the	thing	that	everybody	is	crazy	for:	Your	
statistical	 test	 of	 “significance”.	 If	 you’ve	 already	 done	 research,	 your	 eyes	will	
probably	immediately	jump	to	the	p-value,	which	in	many	fields	is	your	ticket	for	
publishing	 your	work.	 There’s	 a	 little	 bit	 of	 an	 obsession	with	 p-values	 …	 and	
even	 though	 they	 are	 regarded	 as	 so	 important,	 they	 are	 quite	 often	
misunderstood!	So	what	exactly	does	the	p-value	mean	here?	
	
One	 way	 to	 phrase	 it	 is	 to	 say	 that	 assuming	 your	model	 is	 doing	 nothing,	 the	
probability	of	your	data	is	relatively	low	(because	the	p-value	is	small	in	this	case).	
Technically	speaking,	the	p-value	is	a	conditional	probability,	it	is	a	probability	
under	the	condition	that	the	null	hypothesis	is	true.	In	this	case,	the	null	hypothesis	
is	“sex	has	no	effect	on	pitch”.	And,	the	linear	model	shows	that	if	this	hypothesis	
is	true,	then	the	data	would	be	quite	unlikely.	This	is	then	interpreted	as	showing	
that	 the	alternative	hypothesis	 “sex	 affects	pitch”	 is	more	 likely	 and	hence	 that	
your	result	is	“statistically	significant”.	
	
Usually,	however,	you	have	to	distinguish	between	the	significance	of	the	overall	
model	(the	p-value	at	the	very	bottom	of	the	output),	which	considers	all	effects	
together,	 from	 the	 p-value	 of	 individual	 coefficients	 (which	 you	 find	 in	 the	
coefficients	 table	above	the	overall	significance).	We’ll	 talk	more	about	this	 in	a	
bit.	
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Then	comes	the	F-value	and	the	degrees	of	 freedom.	For	an	explanation	of	 this,	
see	 my	 tutorial	 on	 ANOVAs	 and	 the	 logic	 behind	 the	 F-test	
(http://bodowinter.com/tutorial/bw_anova_general.pdf).	 For	 a	 general	 linear	
model	analysis,	you	probably	need	this	value	to	report	your	results.	If	you	wanted	
to	 say	 that	 your	 result	 is	 “significant”,	 you	would	 have	 to	write	 something	 like	
this:	
	

“We	constructed	a	 linear	model	of	pitch	as	a	 function	of	 sex.	This	model	
was	significant	(F(1,4)=46.61,	p<0.01).	(…)”	

	
Now,	let’s	look	at	the	coefficient	table.	Here	it	is	again:	
	

	
	
Note	that	the	p-value	for	the	overall	model	was	p=0.002407,	which	is	the	same	as	
the	p-value	on	the	right-hand	side	of	the	coefficients	table	in	the	row	that	starts	
with	 “sexmale”.	 This	 is	 because	 your	model	 had	 only	 one	 fixed	 effect	 (namely,	
“sex”)	and	so	the	significance	of	the	overall	model	is	the	same	as	the	significance	
for	 this	coefficient.	 If	you	had	multiple	 fixed	effects,	 then	 the	significance	of	 the	
overall	model	and	 the	significance	of	 this	coefficient	would	be	different.	That	 is	
because	 the	 significance	 of	 the	 overall	 model	 takes	 all	 fixed	 effects	 (all	
explanatory	variables)	 into	account	whereas	 the	coefficients	 table	 looks	at	each	
fixed	effect	individually.	
	
But	why	does	it	say	“sexmale”	rather	than	just	“sex”,	which	is	how	we	named	our	
fixed	effect?	And	where	did	the	females	go?	If	you	look	at	the	estimate	in	the	row	
that	starts	with	“(Intercept)”,	you’ll	see	that	the	value	is	226.33	Hz.	This	looks	like	
it	 could	 be	 the	 estimated	 mean	 of	 the	 female	 voice	 pitches.	 If	 you	 type	 the	
following…	
	
 mean(my.df[my.df$sex=="female",]$pitch) 
	
…	you’ll	get	the	mean	of	female	voice	pitch	values,	and	you’ll	see	that	this	value	is	
very	similar	to	the	estimate	value	in	the	“(Intercept)”	column.	
	
Next,	note	that	the	estimate	for	“sexmale”	is	negative.	If	you	subtract	the	estimate	
in	 the	 first	 row	 from	 the	 second,	 you’ll	 get	128,	which	 is	 the	mean	of	 the	male	
voice	 pitches	 (you	 can	 verify	 that	 by	 repeating	 the	 above	 command	 and	
exchanging	“male”	for	“female”).	
	
To	sum	up,	the	estimate	for	“(Intercept)”	is	the	estimate	for	the	female	category,	
and	 the	 estimate	 for	 “sexmale”	 is	 the	 estimate	 for	 the	 difference	 between	 the	
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females	 and	 the	male	 category.	 This	may	 seem	 like	 a	 very	 roundabout	way	 of	
showing	a	difference	between	two	categories,	so	let’s	unpack	this	further.	
	
Internally,	linear	models	like	to	think	in	lines.	So	here’s	a	picture	of	the	way	the	
linear	model	sees	your	data:	
	

	
		
The	linear	model	imagines	the	difference	between	males	and	females	as	a	slope.	
So,	to	go	“from	females	to	males”,	you	have	to	go	down	–98.33	…	which	is	exactly	
the	coefficient	 that	we’ve	seen	above.	The	 internal	coordinate	system	looks	 like	
this:	

	
	
Females	are	sitting	at	 the	x-coordinate	zero	at	 the	y-intercept	 (the	point	where	
the	 line	crosses	the	y-axis),	and	males	are	sitting	at	 the	x-coordinate	1.	So	now,	
the	output	makes	a	hella	more	sense	to	us:	
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The	females	are	hidden	behind	this	mysterious	“(Intercept)”	and	the	estimate	for	
that	intercept	is	the	estimate	for	female	voice	pitch!	Then,	the	difference	between	
females	and	males	is	expressed	as	a	slope…	“going	down”	by	98.33.	The	p-values	
to	 the	 right	 of	 this	 table	 correspond	 to	 tests	 whether	 each	 coefficient	 is	 “non-
zero”.	Obviously,	226.33	Hz	is	different	from	zero,	so	the	intercept	is	“significant”	
with	a	very	low	p-value.	The	slope	-98.33	is	also	different	from	zero	(but	 in	the	
negative	direction),	and	so	this	is	significant	as	well.	
	
You	might	 ask	 yourself:	Why	did	 the	model	 choose	 females	 to	 be	 the	 intercept	
rather	 than	males?	And	what	 is	 the	basis	 for	 choosing	one	 reference	 level	over	
the	other?	The	lm()	function	simply	takes	whatever	comes	first	in	the	alphabet!	
“f”	comes	before	“m”,	making	“females”	the	intercept	at	x=0	and	“males”	the	slope	
of	going	from	0	to	1.	
	
It	 might	 not	 appear	 straightforward	 to	 you	 why	 we	 can	 express	 categorical	
differences	 (here,	 between	 men	 and	 women)	 as	 a	 slope.	 The	 reason	 why	 this	
works	is	because	the	difference	between	two	categories	is	exactly	correlated	with	
the	slope	between	two	categories.	The	following	figures	will	help	you	realize	this	
fact.	 In	 those	 pictures,	 I	 increased	 the	 distance	 between	 two	 categories	 …	 and	
exactly	proportional	to	this	increase	in	distance,	the	slope	increased	as	well.	
	

	
	
What’s	the	big	advantage	of	thinking	of	the	difference	between	two	categories	as	
a	line	crossing	those	two	categories?	Well,	the	big	advantage	is	that	you	can	use	
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the	 same	 principle	 for	 something	 that	 is	 not	 categorical.	 So,	 if	 you	 had	 a	
continuous	 factor,	 say	 age,	 you	 could	 also	 fit	 a	 line.	 Everything	 would	 work	
exactly	the	same.	Let’s	try	this	out.	Say	you	were	now	interested	in	whether	age	
predicts	voice	pitch.	The	data	might	look	something	like	this:	
	
	 Subject	 Age	 Voice.Pitch	
	 1	 14	 252	Hz	
	 2	 23	 244	Hz	
	 3	 35	 240	Hz	
	 4	 48	 233	Hz	
	 5	 52	 212	Hz	
	 6	 67	 204	Hz	
	
And	here’s	a	scatterplot	of	this	data:	

	
	
O.k.,	same	thing	as	before:	We	express	this	as	a	function,	where	our	“fixed	effect”	
is	now	“age”.	
	
	 pitch	~	age	+	ε	
	
Let’s	construct	the	data	in	R	and	run	the	model:	
	
	 age = c(14,23,35,48,52,67) 

pitch = c(252,244,240,233,212,204) 
my.df = data.frame(age,pitch) 
xmdl = lm(pitch ~ age, my.df) 
summary(xmdl) 

	
In	the	output,	let’s	focus	on	the	coefficients:	
	

0 20 40 60 80

18
0

20
0

22
0

24
0

26
0

28
0

Vo
ic

e 
pi

tc
h 

(H
z)

Age (years)



	 10	

	
	
Again,	the	significance	of	the	intercept	is	not	very	interesting.	Remember	that	the	
p-value	 in	 each	 row	 is	 simply	 a	 test	 of	 whether	 the	 coefficient	 to	 the	 left	 is	
significantly	different	 from	zero.	The	 intercept	(267.0765)	here	 is	 the	predicted	
pitch	 value	 for	 people	 with	 age	 0.	 This	 intercept	 doesn’t	 make	 much	 sense	
because	people	who	are	not	born	yet	don’t	really	have	voice	pitch.	
	
What	 really	 interests	 us	 is	 “age”,	which	 emerges	 as	 a	 significant	 “predictor”	 of	
voice	 pitch.	 The	 way	 to	 read	 the	 output	 for	 age	 (“-0.9099“)	 is	 that	 for	 every	
increase	of	age	by	1	you	decrease	voice	pitch	by	0.9099	Hertz.	Easy-peasy:	just	go	
one	 step	 to	 the	 right	 in	 your	 graph	 (in	 your	 unit	 of	measurement,	 here:	 age	 in	
years)	and	one	step	down	(in	your	unit	of	measurement,	here:	voice	pitch	in	Hz).	
	
The	 scatterplot	 below	 neatly	 summarizes	 the	 model:	 The	 line	 represents	 the	
mean	that	the	model	predicts	for	people	at	age	0,	1,	2,	3	etc.	This	is	the	line	that	
represents	 the	 coefficients	 of	 the	model.	 It’s	 worth	 looking	 at	 this	 picture	 and	
comparing	it	to	the	coefficients	table	above.	See	that	the	line	at	x=0	is	267.0765	
(our	intercept),	and	the	slope	is	-0.9099.	
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Meaningful	and	meaningless	intercepts	
You	might	 want	 to	 remedy	 the	 above-discussed	 situation	 that	 the	 intercept	 is	
meaningless.	 One	way	 of	 doing	 this	would	 be	 to	 simply	 subtract	 the	mean	 age	
from	each	age	value,	as	is	done	below:	
	

my.df$age.c = my.df$age - mean(my.df$age) 
xmdl = lm(pitch ~ age.c, my.df) 
summary(xmdl) 

	
Here,	we	just	created	a	new	column	“age.c”	that	is	the	age	variable	with	the	mean	
subtracted	 from	 it.	 This	 is	 the	 resulting	 coefficient	 table	 from	 running	 a	 linear	
model	analysis	of	this	“centered”	data:	
	

	
	
Note	that	while	the	estimate	has	changed	from	267.0765	(predicted	voice	pitch	at	
age	 0)	 to	 230.8333	 (predicted	 voice	 pitch	 at	 average	 age),	 the	 slope	 hasn’t	
changed	 and	 neither	 did	 the	 significance	 associated	 with	 the	 slope	 or	 the	
significance	associated	with	the	full	model.	That	is,	you	haven’t	messed	at	all	with	
the	nature	of	your	model,	you	just	changed	the	metric	so	that	the	intercept	is	now	
the	mean	voice	pitch.	So,	via	centering	our	variable	we	made	the	intercept	more	
meaningful.	
	

Going	on	
Both	 of	 these	 examples	 have	 been	 admittedly	 simple.	 However,	 things	 easily	
“scale	up”	 to	more	complicated	stuff.	 Say,	you	measured	 two	 factors	 (“age”	and	
“sex”)	…	you	could	put	them	in	the	same	model.	Your	formula	would	then	be:	
	
	 pitch	~	sex	+	age	+	ε	
	
Or,	you	could	add	dialect	as	an	additional	factor:	
	
	 pitch	~	dialect	+	sex	+	age	+	ε	
	
And	so	on	and	so	on.	The	only	thing	that	changes	is	the	following.	The	p-value	at	
the	bottom	of	the	output	will	be	the	p-value	for	the	overall	model.	This	means	that	
the	 p-value	 considers	 how	 well	 all	 of	 your	 fixed	 effects	 together	 help	 in	
accounting	 for	variation	 in	pitch.	The	coefficient	output	will	 then	have	p-values	
for	the	individual	fixed	effects.	
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This	 is	what	people	sometimes	call	“multiple	regression”,	where	you	model	one	
response	variable	as	a	function	of	multiple	predictor	variables.	The	linear	model	
is	just	another	word	for	multiple	regression.	
	
	
	
	
	

Don’t	stop	here!!!	
Assumptions	

	
	
There’s	a	reason	why	we	call	the	linear	model	a	model.	Like	any	other	model,	the	
linear	 model	 has	 assumptions	 …	 and	 it’s	 important	 to	 talk	 about	 these	
assumptions.	So	here’s	a	whirlwind	tour	through	the	conditions	that	have	to	be	
satisfied	in	order	for	the	linear	model	to	be	meaningful:	
	
(1)	Linearity	
It’s	called	“linear	model”	for	a	reason!	The	thing	to	the	left	of	our	simple	formula	
above	has	to	be	the	result	of	a	linear	combination	of	the	things	on	the	right.	If	it	
doesn’t,	the	residual	plot	will	indicate	some	kind	of	curve,	or	it	will	indicate	some	
other	pattern	(e.g.,	two	lines	if	you	have	categorical	binary	data).	
	
We	haven’t	 talked	about	 residual	plots	yet,	 let	alone	 residuals.	 So,	 let’s	do	 that!	
Have	 a	 look	 at	 the	 picture	 below,	 which	 is	 a	 depiction	 of	 the	 age/pitch	
relationship	again:	
	

	
	

0 20 40 60 80

18
0

20
0

22
0

24
0

26
0

28
0

Vo
ic

e 
pi

tc
h 

(H
z)

Age (years)



	 13	

The	red	lines	indicate	the	residuals,	which	are	the	deviations	of	the	observed	data	
points	 from	the	predicted	values	 (the	so-called	 “fitted	values”).	 In	 this	case,	 the	
residuals	are	all	fairly	small	…	which	is	because	the	line	that	represents	the	linear	
model	predicts	our	data	very	well,	i.e.,	all	points	are	very	close	to	the	line.	
	
To	get	a	better	view	of	 the	residuals,	you	can	take	a	snapshot	of	 this	graph	 like	
this…	
	

	
	
…	 and	 rotate	 it	 over.	 So,	 you	 make	 a	 new	 plot	 where	 the	 line	 that	 the	 model	
predicts	is	now	the	center	line.	Like	here:	

	
	
This	 is	 a	 residual	 plot.	 The	 fitted	 values	 (the	 predicted	 means)	 are	 on	 the	
horizontal	 line	(at	y=0).	The	residuals	are	 the	vertical	deviations	 from	this	 line.	
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This	view	is	just	a	rotation	of	the	actual	data	(compare	the	residual	plot	with	the	
scatterplot	to	see	this).	To	construct	the	residual	plot	for	yourself,	simply	type3:	
	
	 plot(fitted(xmdl),residuals(xmdl)) 
	
In	 this	 case…	 there	 isn’t	 any	 obvious	 pattern	 in	 the	 residuals.	 If	 there	were	 a	
nonlinear	or	 curvy	pattern,	 then	 this	would	 indicate	 a	 violation	of	 the	 linearity	
assumption.	Here’s	an	example	of	a	residual	plot	that	clearly	shows	a	violation	of	
linearity:	

	
	
What	to	do	if	your	residual	plot	indicates	nonlinearity?	There’s	several	options:	
	

• You	 might	 miss	 an	 important	 fixed	 effect	 that	 interacts	 with	 whatever	
fixed	effects	you	already	have	in	your	model.	Potentially	the	pattern	in	the	
residual	plot	goes	away	if	this	fixed	effect	is	added.	

• Another	 (commonly	 chosen)	 option	 is	 to	 perform	 a	 nonlinear	
transformation	of	your	response,	e.g.,	by	taking	the	log-transform.	

• You	can	also	perform	a	nonlinear	transformation	of	your	fixed	effects.	So,	
if	age	were	somehow	related	to	pitch	in	a	U-shaped	way	(perhaps,	if	very	
young	people	had	high	pitch	and	very	old	people	had	high	pitch,	too,	with	
intermediate	ages	having	a	“dip”	in	pitch),	then	you	could	add	age	and	age2	
(age-squared)	as	predictors.	

• Finally,	 if	 you’re	 seeing	 stripes	 in	 your	 residual	 plot,	 then	 you’re	 most	
likely	dealing	with	some	kind	of	categorical	data	–	and	you	would	need	to	
turn	to	a	somewhat	different	class	of	models,	such	as	logistic	models.	

	
	
	 	

																																																								
3	Your	 plot	will	 have	 no	 central	 line	 and	 it	will	 have	 different	 scales.	 It’s	worth	 spending	 some	
time	on	tweaking	your	residual	plot	and	making	it	pretty…	in	particular,	you	should	make	the	plot	
so	that	there’s	more	space	around	the	margins.	This	will	make	any	patterns	easier	to	see.	Have	a	
look	at	some	R	graphic	tutorials	for	this.	
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(2)	Absence	of	collinearity	
When	two	fixed	effects	(two	predictors)	are	correlated	with	each	other,	they	are	
said	 to	 be	 collinear.	 Say,	 you	 were	 interested	 in	 how	 average	 talking	 speed	
affects	 intelligence	 ratings	 (i.e.,	 people	 who	 talk	 more	 quickly	 are	 rated	 to	 be	
more	intelligent)…	
	
	 intelligence	ratings	~	talking	speed	
	
…	 and	 you	measured	 several	 different	 indicators	 of	 talking	 speed,	 for	 example,	
your	syllables	per	seconds,	words	per	seconds	and	sentences	per	seconds.	These	
different	 measures	 are	 going	 to	 be	 correlated	 with	 each	 other	 because	 if	 you	
speak	more	quickly,	then	you	say	more	syllables,	words	and	sentences	in	a	given	
amount	of	 time.	 If	 you	were	 to	use	 all	 of	 these	 correlated	predictors	 to	predict	
intelligence	 ratings	 within	 the	 same	 model,	 you	 are	 likely	 going	 to	 run	 into	 a	
collinearity	problem.	
	
If	 there’s	 collinearity,	 the	 interpretation	 of	 the	 model	 becomes	 unstable:	
Depending	on	which	one	of	correlated	predictors	is	in	the	model,	the	fixed	effects	
become	 significant	 or	 cease	 to	 be	 significant.	 And,	 the	 significance	 of	 these	
correlated	or	collinear	fixed	effects	is	not	easily	interpretable,	because	they	might	
steal	each	other’s	“explanatory	power”	(that’s	a	very	coarse	way	of	saying	what’s	
actually	going	on,	but	you	get	the	idea).	
	
Intuitively,	 this	makes	 a	 lot	 of	 sense:	 If	multiple	 predictors	 are	 very	 similar	 to	
each	other,	then	it	becomes	very	difficult	to	decide	what,	in	fact,	is	playing	a	big	
role.	
	
How	to	get	rid	of	collinearity?	Well	first	of	all,	you	might	pre-empt	the	problem	in	
the	design	stage	of	your	study	and	focus	on	a	few	fixed	effects	that	you	know	are	
not	correlated	with	each	other.	If	you	didn’t	do	this	and	you	have	several	multiple	
measures	to	choose	from	at	the	analysis	stage	of	your	study	(e.g.,	three	different	
ways	 of	 measuring	 “talking	 speed”),	 think	 about	 which	 one	 is	 the	 most	
meaningful	 and	 drop	 the	 others	 (be	 careful	 here:	 don’t	 base	 this	 dropping	
decision	 on	 the	 “significance”).	 Finally,	 you	might	want	 to	 consider	 dimension-
reduction	techniques	such	as	Principal	Component	Analysis.	These	can	transform	
several	correlated	variables	into	a	smaller	set	of	variables	which	you	can	then	use	
as	new	fixed	effects.	
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(3)	Homoskedasticity	…	or	“absence	of	heteroskedasticity”	
Being	 able	 to	 pronounce	 “heteroskedasticity”	 several	 times	 in	 a	 row	 in	 quick	
succession	 will	 make	 you	 a	 star	 at	 your	 next	 cocktail	 party,	 so	 go	 ahead	 and	
rehearse	pronouncing	them	now!	
	
Jokes	aside,	homoskedasticity	is	an	extremely	important	assumption.	It	says	that	
the	variance	of	your	data	should	be	approximately	equal	across	the	range	of	your	
predicted	 values.	 If	 homoscedasticity	 is	 violated,	 you	 end	 up	 with	
heteroskedasticity,	or,	in	other	words,	a	problem	with	unequal	variances.	
	
For	 the	 homoscedasticity	 assumption	 to	 be	 met,	 the	 residuals	 of	 your	 model	
need	to	roughly	have	a	similar	amount	of	deviation	from	your	predicted	values.	
Again,	 we	 can	 check	 this	 by	 looking	 at	 a	 residual	 plot.	 Here’s	 the	 one	 for	 the	
age/pitch	data	again:	
	

	
	
There’s	 not	 really	 that	 many	 data	 points	 to	 tell	 whether	 this	 is	 really	
homoscedastic.	 In	 this	 case,	 I	 would	 conclude	 that	 there’s	 not	 enough	 data	 to	
safely	 determine	 whether	 there	 is	 or	 isn’t	 heteroskedasticity.	 Usually,	 I	 would	
construct	models	for	much	larger	data	sets	anyway.	
	
So,	here’s	a	plot	that	gives	you	an	idea	of	how	a	“good”	residual	plot	 looks	with	
more	data:	
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And	another	one:	

	

	
	
A	good	residual	plot	essentially	looks	blob-like.	It’s	a	good	idea	to	generate	some	
random	data	to	see	how	a	plot	with	roughly	equal	variances	looks	like.	You	can	
do	so	using	the	following	command	line:	
	
	 plot(rnorm(100),rnorm(100)) 
	
This	creates	two	sets	of	100	normally	distributed	random	numbers	with	a	mean	
of	 0	 and	 a	 standard	 deviation	 of	 1.	 If	 you	 type	 this	 in	multiple	 times	 to	 create	
multiple	plots,	you	can	get	a	feel	of	how	a	“normal”	residual	plot	should	look	like.	
	
The	next	residual	plot	shows	obvious	heteroskedasticity:	
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In	this	plot,	higher	fitted	values	have	larger	residuals	…	indicating	that	the	model	
is	more	“off”	with	larger	predicted	means.	So,	the	variance	is	not	homoscedastic:	
it’s	smaller	in	the	lower	range	and	larger	in	the	higher	range.	
	
What	to	do?	Again,	transforming	your	data	often	helps.	Consider	a	log-transform	
here	as	well.	
	
(4)	Normality	of	residuals	
The	 normality	 of	 residuals	 assumption	 is	 the	 one	 that	 is	 least	 important.	
Interestingly,	many	people	seem	to	think	it	is	the	most	important	one,	but	it	turns	
out	that	linear	models	are	relatively	robust	against	violations	of	the	assumptions	
of	normality.	Researchers	differ	with	respect	to	how	much	weight	they	put	onto	
checking	this	assumption.	For	example,	Gellman	and	Hill	(2007),	a	famous	book	
on	 linear	models	and	mixed	models,	do	not	even	recommend	diagnostics	of	 the	
normality	assumption	(ibid.	46).	
	
If	you	wanted	to	test	the	assumption,	how	would	you	do	this?	Either	you	make	a	
histogram	of	the	residuals	of	your	model,	using…	
	
	 hist(residuals(xmdl)) 
	
…	or	a	Q-Q	plot	…	
	
	 qqnorm(residuals(xmdl)) 
	
Here’s	a	residual	plot	and	a	Q-Q	plot	of	the	same	residuals	next	to	each	other.		
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These	 look	 good.	 The	 histogram	 is	 relatively	 bell-shaped	 and	 the	 Q-Q	 plot	
indicates	that	the	data	falls	on	a	straight	line	(which	means	that	it’s	similar	to	a	
normal	 distribution).	 Here,	 we	 would	 conclude	 that	 there	 are	 no	 obvious	
violations	of	the	normality	assumption.	
	
(5)	Absence	of	influential	data	points	
Some	people	wouldn’t	call	“the	absence	of	influential	data	points”	an	assumption	
of	 the	 model.	 However,	 influential	 data	 points	 can	 drastically	 change	 the	
interpretation	of	your	 results,	 and	 similar	 to	 collinearity,	 it	 can	 lead	 to	 instable	
results.	
	
How	to	check?	Here’s	a	useful	R	function,	dfbeta(),	that	you	can	use	on	a	model	
object	like	our	xmdl	from	above.	
	

	
	
For	 each	 coefficient	 of	 your	model	 (including	 the	 intercept),	 the	 function	 gives	
you	the	so-called	DFbeta	values.	These	are	the	values	with	which	the	coefficients	
have	 to	 be	 adjusted	 if	 a	 particular	 data	 point	 is	 excluded	 (sometimes	 called	
“leave-one-out	diagnostics”).	More	concretely,	let’s	look	at	the	age	column	in	the	
data	frame	above.	The	first	row	means	that	the	coefficient	for	age	(which,	if	you	
remember,	 was	 -0.9099)	 has	 to	 be	 adjusted	 by	 0.06437573	 if	 data	 point	 1	 is	
excluded.	 That	means	 that	 the	 coefficient	 of	 the	model	 without	 the	 data	 point	
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would	 be	 -0.9742451	 (which	 is	 -0.9099	 minus	 0.06437573…	 if	 the	 slope	 is	
negative,	DFbeta	values	are	subtracted,	if	it’s	positive,	they	are	added).	
	
There’s	a	little	bit	of	room	for	interpretation	in	what	constitutes	a	large	or	a	small	
DFbeta	value.	One	thing	you	can	say	for	sure:	Any	value	that	changes	the	sign	of	
the	 slope	 is	 definitely	 an	 influential	 point	 that	 warrants	 special	 attention…	
because	 excluding	 that	 point	 would	 change	 the	 interpretation	 of	 your	 results.	
What	I	then	do	is	to	eyeball	the	DFbetas	and	look	for	values	that	are	different	by	
at	least	half	of	the	absolute	value	of	the	slope.	Say,	my	slope	would	be	2	…	then	a	
DFbeta	value	of	1	or	 -1	would	be	alarming	 to	me.	 If	 it’s	 a	 slope	of	 -4,	 a	DFbeta	
value	of	2	or	-2	would	be	alarming	to	me.	
	
How	to	proceed	if	you	have	influential	data	points?	Well,	it’s	definitely	not	legit	to	
simply	exclude	those	points	and	report	only	the	results	on	the	reduced	data	set.	A	
better	approach	would	be	to	run	the	analysis	with	the	influential	points	and	then	
again	without	the	influential	points	…	then	you	can	report	both	analyses	and	state	
whether	 the	 interpretation	of	 the	results	does	or	doesn’t	 change.	The	only	case	
when	it	is	o.k.	to	exclude	influential	points	is	when	there’s	an	obvious	error	with	
them,	so	for	example,	a	value	that	doesn’t	make	sense	(e.g.,	negative	age,	negative	
height)	or	a	value	that	obviously	is	the	result	due	to	a	technical	error	in	the	data	
acquisition	stage	(e.g.,	voice	pitch	values	of	0).	Influence	diagnostics	allow	you	to	
spot	those	points	so	you	can	then	go	back	to	the	original	data	and	see	what	went	
wrong4.	
	
(6)	Independence	!!!!!!!	
The	 independence	 assumption	 is	 by	 far	 the	 most	 important	 assumption	 of	 all	
statistical	 tests.	 In	 the	 linear	model	analyses	 that	we	did	so	 far,	each	data	point	
came	 from	a	different	 subject.	To	 remind	you,	here’s	our	 two	data	 sets	 that	we	
worked	on:	
	
	 Study	1	 	 	 	 	 Study	2	
	 Subject	 Sex	 Voice.Pitch		 Subject	 Age	 Voice.Pitch	
	 1	 female	 233	Hz	 	 1	 	 14	 252	Hz	
	 2	 female	 204	Hz	 	 2	 	 23	 244	Hz	
	 3	 female	 242	Hz	 	 3	 	 35	 240	Hz	
	 4	 male	 130	Hz	 	 4	 	 48	 233	Hz	
	 5	 male	 112	Hz	 	 5	 	 52	 212	Hz	
	 6	 male	 142	Hz	 	 6	 	 67	 204	Hz	
	
We	were	able	to	run	the	linear	model	on	this	data	the	way	we	did	only	because	
each	 row	 in	 this	 dataset	 comes	 from	 a	 different	 subject.	 If	 you	 elicit	 multiple	

																																																								
4	For	 an	 interesting	 back-and-forth	 on	 a	 particular	 example	 of	 how	much	 influence	 diagnostics	
and	extreme	values	can	change	the	interpretation	of	a	study,	have	a	look	at	the	delightful	episode	
of	academic	banter	between	Ullrich	and	Schlüter	(2011)	and	Brandt	(2011).	
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responses	 from	 each	 subject,	 then	 those	 responses	 that	 come	 from	 the	 same	
subject	cannot	be	regarded	as	independent	from	each	other.	
	
So,	what	exactly	is	independence?	The	ideal	case	is	a	coin	flip	or	the	roll	of	a	die:	
Each	coin	flip	and	each	roll	of	a	die	is	absolutely	independent	from	the	outcome	
of	the	preceding	coin	flips	or	die	rolls.	The	same	should	hold	for	your	data	points	
when	 you	 run	 a	 linear	 model	 analysis.	 So,	 the	 data	 points	 should	 come	 from	
different	subjects.	And	each	subject	should	only	contribute	one	data	point.	
	
When	you	violate	the	independence	assumption,	all	hell	breaks	loose.	The	other	
assumptions	 that	 we	 mentioned	 above	 are	 important	 as	 well,	 but	 the	
independence	 assumption	 is	 by	 far	 the	 most	 important	 one.	 Violating	
independence	may	greatly	inflate	your	chance	of	finding	a	spurious	result	and	it	
results	 in	 a	p-value	 that	 is	 completely	meaningless.	Unfortunately,	 violations	of	
the	 independence	assumption	are	quite	 frequent	 in	many	branches	of	science	–	
so	 much	 in	 fact,	 that	 there’s	 a	 whole	 literature	 associated	 with	 this	 violation,	
starting	 from	 Hurlbert	 (1984)	 for	 ecology,	 Freeberg	 and	 Lucas	 (2009)	 for	
psychology,	 Lazic	 (2010)	 for	 neuroscience	 and	 my	 own	 small	 paper	 for	
phonetics/speech	science	(Winter,	2011).	
	
How	can	you	guarantee	 independence?	Well,	 independence	 is	a	question	of	 the	
experimental	 design	 in	 relation	 to	 the	 statistical	 test	 that	 you	 use.	 Design	 and	
statistical	analyses	are	closely	intertwined	and	you	can	make	sure	that	you	meet	
the	independence	assumption	by	only	collecting	one	data	point	per	subject.	
	
Now,	 a	 lot	 of	 the	 times,	 we	 want	 to	 collect	 more	 data	 per	 subject,	 such	 as	 in	
repeated	 measures	 designs.	 If	 you	 end	 up	 with	 a	 data	 set	 that	 has	 non-
independencies	 in	 it,	 you	 need	 to	 resolve	 these	 non-independencies	 at	 the	
analysis	 stage.	This	 is	where	mixed	models	 come	 in	handy…	and	 this	 is	where	
we’ll	switch	to	the	second	tutorial.	
	
	
	
	
	

PROCEED	TO	TUTORIAL	2	
(which	is	a	whirlwind	tour	of	mixed	models)	

	
http://www.bodowinter.com/tutorial/bw_LME_tutorial2.pdf	
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